

# ICMX O8N <br>  

Multi-mode, programmable time delay



TUDR = Universal Mode

Input Voltage
$12 \mathrm{D}=12 \mathrm{VDC} 24 \mathrm{~A}=24 \mathrm{VAC}$
$24 \mathrm{D}=24 \mathrm{VDC} \quad 115 \mathrm{~A}=115 \mathrm{VAC}$
$10 \mathrm{D}=110 \mathrm{VDC} \quad 230 \mathrm{~A}=230 \mathrm{VAC}$

## Output Type

C1 = Single Pole 1 FORM C (8-pin)
C2 = Double Pole 2 FORM C (11-pin)

## CAUTION

Installation should be performed by trained technicians only. Adhere to all local and national electric codes. Disconnect all power to the system before making connections.
SINGLE TIME DELAYS
Delay on Make ..... 2
Delay on Break. ..... 3
Interval ..... 4
Single Shot ..... 5
Programming for Single Time Delays ..... 6
DUAL TIME DELAYS
Delay on Make/Delay on Break. ..... 8
Repeat Cycle. ..... 9
Programming for Dual Time Delays ..... 10
Testing the Unit. ..... 12
Ordering Information ..... 12
Specifications ..... 13

## Mode of Operation

When power is applied to the input，the time delay begins．After the time delay is complete，the contacts transfer and remain transferred as long as power is applied．The control is reset by removing power during or after the time delay period．


## Connection Diagrams

## Single Pole Output 1 FORM C



Double Pole Output 2 FORM C


Mode Switch，Delay on Make （See programming instructions on P．6）


## Mode of Operation

Power must be applied before and during the time delay period． When the initiate contact closes，the contacts transfer and remain transferred as long as the initiate contact is closed．The time delay begins when the initiate contact opens．At the end of the time delay period，the contacts are returned to the off state．If the initiate contact recloses during the time delay period，the contacts remain transferred and the time delay is reset to zero．
Removal of input power during the delay returns the contacts to the off state and resets the time delay to zero．A one second interrogation delay prevents nuisance trips due to initiate switch bounce or tampering．


## Connection Diagrams

Single Pole Output 1 FORM C


Double Pole Output 2 FORM C


Mode Switch， Delay on Break （See programming instructions on P．6）

$\mathbb{C} \boldsymbol{\omega}$

## Mode of Operation

When power is applied to the input, the contacts will transfer. After the time delay is complete, the contacts will return to their off state. The contacts will remain in the off state indefinitely unless power is reset.


## Connection Diagrams

Single Pole Output 1 FORM C


Mode Switch, Interval
(See programming
4 instructions on P.6)

Double Pole Output 2 FORM C


## Mode of Operation

Power must be applied to the input terminals before and during the delay period．When the initiate contact closes， the output contacts transfer immediately and the time delay begins．The output contacts return to their original position when the delay period is complete．
Note：The initial contact closure can be momentary or maintained．To reset the timer during the delay period， remove the input power．


## Connection Diagrams

Single Pole Output 1 FORM C


Mode Switch， Single Shot
（See programming instructions on P．6）

Double Pole Output 2 FORM C

$\varangle \boldsymbol{\bullet}$

Setting the Mode of Operation

| Mode of Operation | A | B | C |
| :--- | :---: | :---: | :---: |
| DELAY ON MAKE | OFF | OFF | OFF |
| DELAY ON BREAK | OFF | OFF | ON |
| INTERVAL | OFF | ON | OFF |
| SINGLE SHOT | OFF | ON | ON |
| DOM-DOB | See Page $\mathbf{1 0}$ |  |  |
| REPEAT CYCLE |  |  |  |

## Selectable Time Ranges

- Timing range multipliers $\mathrm{x} 0.1, \mathrm{x} 1, \mathrm{x} 10$, or x 100
- Timing in Minutes or Seconds
(The example shown is set for "seconds" and the multiplier is $x 1$ ).

Timing Adjustment

- The time delay is adjusted by closing any combination of 10 binary code switches
- Transfer a switch to the ON position then add all the ON switch values for the total time delay. (The example shown is set for 171 seconds).


The example shown is set for Delay on Make/Delay on Break.
Step 1: Set the Mode of Operation
(Single and dual modes are selected by transferring a combination of three mode switches).

Step 2: Select Minutes or Seconds
Step 3: Select the Multiplier
Step 4: Set the Time Delay

## Mode of Operation

Power must be applied at all times. Upon closure of the initiate switch, the delay on make period begins. Once complete, the contacts transfer and remain transferred as long as the initiate switch is closed. When the initiate switch opens, the delay on break period begins.
Once complete, the contacts return to their original state and all time delays reset. If the initiate contact re-closes during the delay on break period, the contacts remain transferred and the delay on break is reset.
Removal of input power resets all timing functions.
Should the initiate contact open during the delay on make period, the delay on make period is reset to zero.

## Connection Diagrams

Single Pole Output 1 FORM C


Mode Switch, DOM/DOB (See programming 8 instructions on P.10)

Double Pole Output 2 FORM C


$\mathbb{C} \boldsymbol{\omega}$

## Mode of Operation

The output contacts transfer immediately when power is applied to the input terminals, initiating the ON delay. Upon completion of the ON delay, the relay transfers and the OFF delay is initiated. Maintained power application allows the unit to recycle indefinitely.


## Connection Diagrams

Single Pole Output 1 FORM C


Mode Switch, Repeat Cycle (See programming instructions on P.10)

Double Pole Output 2 FORM C


Setting the Mode of Operation

| Mode of Operation | A | B | C |  |
| :--- | :---: | :---: | :---: | :---: |
| DELAY ON MAKE |  |  |  |  |
| DELAY ON BREAK | See Page 6 |  |  |  |
| INTERVAL |  |  |  |  |
| SINGLE SHOT |  |  |  |  |
| DOM-DOB | ON | OFF | OFF |  |
| REPEAT CYCLE | ON | OFF | ON |  |

## Selectable Time Ranges

- Timing range multipliers $\mathrm{x} 0.1, \mathrm{x} 1, \mathrm{x} 10$, or x100
- Timing in Minutes or Seconds
(In the example shown, the first time delay is set for "seconds" and the multiplier is x1).
(The second time delay is set for "minutes", and the multiplier is $\times 10$ ).

Timing Adjustment

- Each time delay is adjusted by closing any combination of five binary coded switches.
- Transfer a switch to the ON position then add all the ON switch values for the total time delay. (In the example shown, the first time is set for 11 seconds, the second for 50 minutes).


The example shown is set for Delay on Make/Delay on Break.
Step 1: Set the Mode of Operation
Step 2: Select Minutes or Seconds, First Time Delay
Step 3: Select the Multiplier, First Time Delay
Step 4: Set the First Time Delay
Step 5: Select the Multiplier, Second Time Delay
Step 6: Select Minutes or Seconds, Second Time Delay
Step 7: Set the Second Time Delay

The test mode switch allows the user to test the electrical 5 connections without changing the time delay settings. When the test mode switch is placed in the ON position, the contacts immediately transfer and remain transferred until the switch is turned OFF again. (Don't forget to turn it off.)

## 

| ICM Series | Input Voltage | Output Type | Description |
| :---: | :---: | :---: | :---: |
| ICM500 | 24 VAC | Single Pole, 1 FORM C 8-pin | - Multi-mode; DOM, DOB, Interval, Single Shot, DOM/DOB and Repeat Cycle <br> - Crystal Accuracy <br> - Switch Settable Delays from 1 to 1,023 seconds in multiples of $0.1,1,10$, and 100 seconds <br> - Base to be ordered separately as an accessory item - For 8-pin order ASC-8 <br> - For 11-pin order ASC-11 |
| ICM501 | 115 VAC |  |  |
| ICM502 | 230 VAC |  |  |
|  |  |  |  |
| ICM503 | 12 VDC |  |  |
| ICM504 | 24 VDC |  |  |
| ICM505 | 110 VDC |  |  |
| Note: <br> For 11-pin base model, Double Pole, 2 FORM C, add suffix D Example: ICM501D = 115 VAC, 11-pin |  |  |  |
|  |  |  |  |  |  |

## ELECTRICAL SPECIFICATIONS

## Time Delay

- Type: Switch Settable
- Range:1-1,023 seconds or minutes - Multiples of $0.1,1,10,100$
- Repeat Accuracy:
$- \pm 2 \%$ under fixed conditions
- Fixed Time Tolerance: $\pm 5 \%$
- Time Delay vs. Temp. and Voltage: $- \pm 5 \%$ Maximum over the specified range of input voltage and temperature.


## Reset Time

- During and after timing:
- 75 milliseconds (May be reset during the timing period without false output)


## Input

- Nominal Voltage: 24, 115, 230 VAC 12, 24, 110 VDC
- Tolerance: $\pm 15 \%$ of nominal
- Frequency: $50 / 60 \mathrm{~Hz}$
- Maximum allowable DC ripple voltage: 20\% peak to peak
- Power Consumption:
- During time: 0.5 watts max.
- After timing: 2.0 watts max.


## Output

- Type: Relay
- Form:SPDT, DPDT
- Rating: 10 amps resistive at 230 VAC
- 1/6 HP @ 115 VAC
- 1/3 HP @ 230 VAC
- Life: Mechanical 10,000,000;
- Full load: 1,000,000 operations


## Protection

- Transient: $\pm 1,400$ volts for 100 microseconds
- Polarity: DC units are inverse voltage protected
- Dielectric Breakdown:
- 1,500 volts RMS minimum at 60 Hz between input and output terminals
- Insulation Resistance:
- 100 megohms minimum


## MECHANICAL SPECIFICATIONS

- Mounting: Plug-in
- Termination: Standard 8 pin (octal) or 11-pin plug-in
- Weight: 5 ounces (142 grams)


## ENVIRONMENTAL SPECIFICATIONS

- Operating Temp: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Storage Temp: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

